Transport in Proton Exchange Membranes for Fuel Cell Applications—A Systematic Non-Equilibrium Approach
نویسندگان
چکیده
We hypothesize that the properties of proton-exchange membranes for fuel cell applications cannot be described unambiguously unless interface effects are taken into account. In order to prove this, we first develop a thermodynamically consistent description of the transport properties in the membranes, both for a homogeneous membrane and for a homogeneous membrane with two surface layers in contact with the electrodes or holder material. For each subsystem, homogeneous membrane, and the two surface layers, we limit ourselves to four parameters as the system as a whole is considered to be isothermal. We subsequently analyze the experimental results on some standard membranes that have appeared in the literature and analyze these using the two different descriptions. This analysis yields relatively well-defined values for the homogeneous membrane parameters and estimates for those of the surface layers and hence supports our hypothesis. As demonstrated, the method used here allows for a critical evaluation of the literature values. Moreover, it allows optimization of stacked transport systems such as proton-exchange membrane fuel cell units where interfacial layers, such as that between the catalyst and membrane, are taken into account systematically.
منابع مشابه
Novel PVA/La2Ce2O7 hybrid nanocomposite membranes for application in proton exchange membrane fuel cells
Proton exchange membrane fuel cells (PEMFCs) are electrochemical devices that show the highest power densities compared to the other type of fuel cell. In this work, nanocomposite membranes used for proton exchange membrane fuel cells as poly(vinyl alcohol)/La2Ce2O7 (PVA-LC) with the aim of increasing the water uptake and proton conductivity. Glutaraldehyde (GA) was used as cross linking agent ...
متن کاملStudies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications
Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...
متن کاملFunctionalized and Electrospun Polymeric Materials as High-Performance Membranes for Direct Methanol Fuel Cell: A Review
Proton exchange membranes (PEM) for a direct methanol fuel cell (DMFC) have main drawbacks which are methanol permeability, reduced proton conductivity and the cost of the membrane. This paper reviews different polymeric materials such as fluorinated, non-fluorinated, acid-base complex, and composite membranes for DMFC. Currently, nonfluorinated membranes gain a lot of atte...
متن کاملSynthesis of Sulfonated Polystyrene/acrylate–ionic Liquid (Si-SPS/A–IL) Hybrid Membranes for Methanol Fuel Cells
In this paper, the silicon-containing sulfonated polystyrene/acrylate–ionic liquid (Si-SPS/A–IL)hybrid membranes was prepared to obtain the proton exchange membrane (PEM) materials withhigh methanol barrier and good selectivity. The Si-SPS/A–IL hybrid membranes characterized asthe function of IL to evaluate their potential as PEMs in direct methanol fuel cells (DMFCs).Fourdifferent Hybrid mater...
متن کاملMethanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications
In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017